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Depth and Stanley depth of the edge ideals of
the powers of paths and cycles

Zahid Iqbal and Muhammad Ishaq

Abstract

Let k be a positive integer. We compute depth and Stanley depth
of the quotient ring of the edge ideal associated to the kth power of
a path on n vertices. We show that both depth and Stanley depth
have the same values and can be given in terms of k and n. If n ≡
0, k + 1, k + 2, . . . , 2k(mod(2k + 1)), then we give values of depth and
Stanley depth of the quotient ring of the edge ideal associated to the
kth power of a cycle on n vertices and tight bounds otherwise, in terms
of n and k. We also compute lower bounds for the Stanley depth of the
edge ideals associated to the kth power of a path and a cycle and prove
a conjecture of Herzog for these ideals.

1 Introduction

Let K be a field and S := K[x1, . . . , xn] the polynomial ring over K. Let M
be a finitely generated Zn-graded S-module. A Stanley decomposition of M
is a presentation of the K-vector space M as a finite direct sum D : M =
⊕s

i=1viK[Wi], where vi ∈ M , Wi ⊆ {x1, . . . , xn}, and viK[Wi] denotes the
K-subspace of M , which is generated by all elements viw, where w is a mono-
mial in K[Wi]. The Zn-graded K-subspace viK[Wi] ⊂ M is called a Stanley
space of dimension |Wi|, if viK[Wi] is a free K[Wi]-module, where |Wi| de-
notes the cardinality of Wi. Define sdepth(D) = min{|Wi| : i = 1, . . . , s},
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and sdepth(M) = max{sdepth(D) : D is a Stanley decomposition of M}.
The number sdepth(D) is called the Stanley depth of decomposition D and
sdepth(M) is called the Stanley depth of M . Stanley conjectured in [24] that
sdepth(M) ≥ depth(M) for any Zn-graded S-module M . This conjecture was
disproved by Duval et al. in [8] as was expected due to different nature of these
two invariants. However, the relation between Stanley depth and some other
invariants has already been established; see [11, 12, 21, 26]. In [11], Herzog,
Vladoiu and Zheng proved that the Stanley depth of M can be computed in
a finite number of steps, if M = J/I, where I ⊂ J ⊂ S are monomial ideals.
But practically it is too hard to compute Stanley depth by using this method;
see for instance, [2, 5, 15, 16]. For computing Stanley depth for some classes
of modules we refer the reader to [14, 20, 22, 23]. In this paper we attempt to
find values and reasonable bounds for depth and Stanley depth of I and S/I,
where I is the edge ideal of a power of a path or a cycle. We also compare the
values of sdepth(I) and sdepth(S/I) and give positive answers to the following
conjecture of Herzog.

Conjecture 1.1. [9] Let I ⊂ S be a monomial ideal then sdepth(I) ≥
sdepth(S/I).

The above conjecture is proved in some other cases; see [13, 16, 20, 23]. The
paper is organized as follows: First two sections are devoted to introduction,
definitions, notation, and discussion of some known results. In third section,
we compute depth and Stanley depth of S/I(P k

n ), where I(P k
n ) denotes the

edge ideal of the kth power of a path Pn on n vertices. Let for q ∈ Q, dqe
denotes the smallest integer greater than or equal to q. Then in Theorems 3.8
and 3.14 we prove that

depth(S/I(P k
n )) = sdepth(S/I(P k

n )) = d n

2k + 1
e.

Let I(Ck
n) be the edge ideal of the kth power of a cycle Cn on n vertices.

In fourth section we give some lower bounds for depth and Stanley depth of
S/I(Ck

n); see Theorems 4.5 and 4.7. If n ≥ 2k+ 2, then by Corollaries 4.6 and
4.8 we prove that if n ≡ 0, k + 1, . . . , 2k(mod(2k + 1)) then depth(S/I(Ck

n)) =
sdepth(S/I(Ck

n)) = d n
2k+1e. Otherwise,

d n

2k + 1
e − 1 ≤ depth(S/I(Ck

n)), sdepth(S/I(Ck
n)) ≤ d n

2k + 1
e.

Last section is devoted to Conjecture 1.1 for I(P k
n ) and I(Ck

n). By our Theorem
5.2 we have

sdepth(I(P k
n )) ≥ d n

2k + 1
e+ 1,
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which shows that I(P k
n ) satisfies Conjecture 1.1. Let n ≥ 2k + 1. Proposition

5.3 gives a lower bound for I(Ck
n)/I(P k

n ) that is

sdepth(I(Ck
n)/I(P k

n )) ≥ dn + k + 1

2k + 1
e.

Corollary 5.5 of this paper proves that I(Ck
n) satisfies Conjecture 1.1.

2 Definitions and notation

Throughout this paper m denotes the unique maximal graded ideal (x1, . . . , xn)
of S. We set Sm := K[x1, x2, . . . , xm], supp(v) := {i : xi|v} and supp(I) :=
{i : xi|u, for some u ∈ G(I)}, where G(I) denotes the unique minimal set of
monomial generators of the monomial ideal I. Let I ⊂ S be an ideal. Then
we write I instead of IS. Thus every ideal will be considered an ideal of S
unless otherwise stated. Let I and J be monomial ideals of S, then for I + J
we write (I, J).

We review some notation and refer the reader to [3] for further details.
Let G be a simple graph. For a positive integer k, the kth power of graph G
is another graph Gk on the same set of vertices, such that two vertices are
adjacent in Gk when their distance in G is at most k. In the whole paper we
label the vertices of the graph G by 1, 2, . . . , n. We denote the set of vertices
of G by [n] := {1, 2, . . . , n} and its edge set by E(G). We assume that all
graphs and their powers are simple graphs. We also assume that all graphs
have at least two vertices and a non-empty edge set. For a graph G, the edge
ideal I(G) associated to G is defined as I(G) := (xixj : {i, j} ∈ E(G)). For
n ≥ 2, a graph G is called a path if E(G) = {{i, i + 1} : i ∈ [n − 1]}. A
path on n vertices is denoted by Pn. For n ≥ 3, a graph G is called a cycle if
E(G) = {{i, i + 1} : i ∈ [n− 1]} ∪ {1, n}. A cycle on n vertices is denoted by
Cn. For n ≥ 2, the kth power of a path, denoted by P k

n , is a graph such that
for all 1 ≤ i < j ≤ n, {i, j} ∈ E(P k

n ) if and only if 0 < j − i ≤ k. If n ≤ k + 1,
then P k

n is a complete graph on n vertices. If n ≥ k + 2, then

E(P k
n ) = ∪n−ki=1

{
{i, i + 1}, {i, i + 2}, . . . , {i, i + k}

}
∪

∪n−1j=n−k+1

{
{j, j + 1}, {j, j + 2}, . . . , {j, n}

}
.

For n ≥ 3, the kth power of a cycle, denoted by Ck
n, is a graph such that for all

vertices 1 ≤ i, j ≤ n, {i, j} ∈ E(Ck
n) if and only if |j− i| ≤ k or |j− i| ≥ n−k.

If n ≤ 2k + 1, then Ck
n is a complete graph on n vertices. If n ≥ 2k + 2, then

E(Ck
n) = E(P k

n )∪∪kl=1

{
{l, l+n−k}, {l, l+n−k+1}, {l, l+n−k+2}, . . . , {l, n}

}
.
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For examples of powers of paths and cycles see Figures 1 and 2.
If n ≤ k+1, then I(P k

n ) is a squarefree Veronese ideal of degree 2. If n ≥ k+2,
then

G(I(P k
n )) = ∪n−ki=1 {xixi+1, xixi+2, . . . , xixi+k}∪

∪n−1j=n−k+1 {xjxj+1, xjxj+2, . . . , xjxn}.

If n ≤ 2k + 1, then I(Ck
n) is a squarefree Veronese ideal of degree 2. If

n ≥ 2k + 2, then

G(I(Ck
n)) = G(I(P k

n )) ∪ ∪kl=1{xlxl+n−k, xlxl+n−k+1, . . . , xlxn}.
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Figure 1: From left to right, P 3
12 and P 4

12 respectively.
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Figure 2: From left to right, C3
10 and C4

10 respectively.

Lemma 2.1 ([17, Lemma 3]). If n ≥ k + 1, then |G(I(P k
n ))| = nk − k(k+1)

2 .

Remark 2.2. If n ≥ 2k + 1, then |G(I(Ck
n))| = nk.

Let G be a graph and i ∈ [n], then NG(xi) := {xj : xixj ∈ G
(
I(G)

)
},

where j ∈ [n]\{i}. For k ≥ 2, 0 ≤ i ≤ k − 1 and n ≥ 2k + 2, let An−k−1,
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An−k+i, Bn−k+i and Dn−k+i denote the monomial prime ideals of S, such
that An−k−1 = (0), An−k+i := (xn−k, xn−k+1, . . . , xn−k+i),

Bn−k+i :=
(
xj : xj ∈ NPk

n
(xn−k+i)

)
= (xn−2k+i, xn−2k+i+1, . . . , xn−k+i−1, xn−k+i+1, . . . , xn),

and Dn−k+i :=
(
xj : xj ∈ NCk

n
(xn−k+i)

)
. Thus if i = 0, then

Dn−k+i = (xn−2k, xn−2k+1, . . . , xn−k−1, xn−k+1, . . . , xn)

and if 1 ≤ i ≤ k − 1, then

Dn−k+i = (xn−2k+i, xn−2k+i+1, . . . , xn−k+i−1, xn−k+i+1, . . . , xn, x1, . . . , xi).

These monomial prime ideals and the following function play important role
in the proof of our main theorems. For k ≥ 2 and 2k + 2 ≤ n ≤ 3k + 1, we
define a function

f : {n− k, n− k + 1, . . . , n− k + i, . . . , n− 1} −→ Z+ ∪ {0}, by

f(n− k + i) =

{
k, if n− 2k − 1 + i ≥ k + 1;
n− 2k − 2 + i, if 2 ≤ n− 2k − 1 + i < k + 1.

In the following we recall some known results that we refer several times in
this paper.

Lemma 2.3 (Depth Lemma). If 0 −→ U −→M −→ N −→ 0 is a short exact
sequence of modules over a local ring S, or a Noetherian graded ring with S0

local, then

1. depthM ≥ min{depthN, depthU}.

2. depthU ≥ min{depthM, depthN + 1}.

3. depthN ≥ min{depthU − 1,depthM}.

Lemma 2.4 ([23, Lemma 2.2]). Let 0 −→ U −→ V −→ W −→ 0 be a short
exact sequence of Zn-graded S-modules. Then

sdepth(V ) ≥ min{sdepth(U), sdepth(W )}.

Lemma 2.5 ([13, Lemma 3.3]). Let I ⊂ S be a squarefree monomial ideal
with supp(I) = [n] and v := xi1xi2 · · ·xiq ∈ S/I such that xjv ∈ I for all
j ∈ [n]\ supp(v). Then sdepth(S/I) ≤ q.

The above Lemma can also be seen as an immediate consequence of the
result of J. Apel [1, Sec.3].
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3 Depth and Stanley of cyclic modules associated to the
edge ideals of the powers of a path

We start this section with some results. These results are essential for com-
putations of depth and Stanley depth of S/I(P k

n ).

Lemma 3.1. Let a ≥ 2 be an integer, {Ei : 1 ≤ i ≤ a} and {Gi : 0 ≤ i ≤ a}
be some families of Zn-graded S-modules such that we have the following short
exact sequences:

0 −→ E1 −→ G0 −→ G1 −→ 0 (1)

0 −→ E2 −→ G1 −→ G2 −→ 0 (2)

...

0 −→ Ea−1 −→ Ga−2 −→ Ga−1 −→ 0 (a− 1)

0 −→ Ea −→ Ga−1 −→ Ga −→ 0 (a)

and depth(Ga) ≥ depth(Ea), depth(Ei) ≥ depth(Ei−1) for all 2 ≤ i ≤ a.
Then depth(G0) = depth(E1).

Proof. By assumption, we have depth(Ga) ≥ depth(Ea), applying Depth
Lemma on the exact sequence (a) we get depth(Ga−1) = depth(Ea). We
also have by assumption

depth(Ga−1) = depth(Ea) ≥ depth(Ea−1).

By applying Depth Lemma on the exact sequence (a−1) we have depth(Ga−2) =
depth(Ea−1). We repeat the same steps on all exact sequences one by one from
bottom to top and we get depth(Gi−1) = depth(Ei) for all i. Thus if i = 1
then we have depth(G0) = depth(E1).

Lemma 3.2. Let k ≥ 2 and n ≥ 2k + 2. Then

S/(I(P k
n ), An−1) ∼= Sn−k−1/I(P k

n−k−1)[xn].

Proof. Since

G(I(P k
n )) = ∪n−ki=1

{
xixi+1, xixi+2, . . . , xixi+k

}
∪

∪n−1i=n−k+1

{
xixi+1, xixi+2, . . . , xixn

}
,
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so we have

I(P k
n ) + An−1 = An−1+[ n−2k−1∑

i=1

(xixi+1, xixi+2, . . . , xixi+k) +

n−k∑
i=n−2k

(xixi+1, xixi+2, . . . , xixi+k)+

n−1∑
i=n−k+1

(xixi+1, xixi+2, . . . , xixn)
]

=

n−2k−1∑
i=1

(
xixi+1, xixi+2, . . . , xixi+k

)
+

n−k−2∑
i=n−2k

(xixi+1, xixi+2, . . . , xixn−k−1) + An−1 = I(P k
n−k−1) + An−1.

Thus the required result follows.

Lemma 3.3. Let k ≥ 2, 0 ≤ i ≤ k − 1 and n ≥ 3k + 2. Then

S/(I(P k
n ) : xn−k+i) ∼= Sn−2k−1+i/I(P k

n−2k−1+i)[xn−k+i].

Proof. It is enough to prove that (I(P k
n ) : xn−k+i) = (I(P k

n−2k−1+i), Bn−k+i).
Clearly

I(P k
n−2k−1+i) ⊂ I(P k

n ) ⊂ (I(P k
n ) : xn−k+i).

Let u ∈ Bn−k+i, then by definition of I(P k
n ), uxn−k+i ∈ I(P k

n ) that is
u ∈ (I(P k

n ) : xn−k+i). Thus Bn−k+i ⊂ (I(P k
n ) : xn−k+i) and we have(

I(P k
n−2k−1+i), Bn−k+i

)
⊂ (I(P k

n ) : xn−k+i). Now for the other inclusion, let

w be a monomial generator of (I(P k
n ) : xn−k+i), then w = v

gcd(v,xn−k+i)
, where

v ∈ G(I(P k
n )). If supp(v) ∩ G(Bn−k+i) 6= ∅, then we have w ∈ G(Bn−k+i) and

if supp(v) ∩ G(Bn−k+i) = ∅, then w ∈ G(I(P k
n )) ∩K[x1, x2, . . . , xn−2k−1+i] =

G(I(P k
n−2k−1+i)).

Lemma 3.4. Let n ≥ 3k + 2 and 0 ≤ i ≤ k − 1, then we have

S/((I(P k
n ), An−k+(i−1)) : xn−k+i) ∼= Sn−2k−1+i/I(P k

n−2k−1+i)[xn−k+i].

Proof. As
(
(I(P k

n ), An−k+(i−1)) : xn−k+i

)
=
(
(I(P k

n ) : xn−k+i), An−k+(i−1)
)
.

Now using the proof of Lemma 3.3 we obtain(
(I(P k

n ) : xn−k+i), An−k+(i−1)
)

=(
I(P k

n−2k−1+i), Bn−k+i, An−k+(i−1)
)

=
(
I(P k

n−2k−1+i), Bn−k+i

)
,

as An−k+(i−1) ⊂ Bn−k+i. Thus the required result follows by Lemma 3.3.
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Remark 3.5. Let m ≥ 2 and I(Pm−1
m ) ⊂ Sm = K[x1, x2, . . . , xm] be the

edge ideal of the (m− 1)th power of path Pm. Then I(Pm−1
m ) is a squarefree

Veronese ideal of degree 2 in variables x1, x2, . . . , xm. Thus by [10, Corollary
10.3.7] and Theorem 3.9

depth(Sm/I(Pm−1
m )) = sdepth(Sm/I(Pm−1

m )) = 1.

Remark 3.6. Let k ≥ 2 and 2k + 2 ≤ n ≤ 3k + 1, then it is easy to see that

(1) If n = 2k + 2, then

S/(I(P k
n ) : xn−k) = S/(x2, . . . , xn−k−1, xn−k+1, . . . , xn) ∼= K[x1, xn−k].

(2) If 0 ≤ i ≤ k − 1 and n > 2k + 2, then

S/(I(P k
n ) : xn−k+i) = S/((I(P k

n ), An−k+(i−1)) : xn−k+i)

∼= Sn−2k−1+i/I(P
f(n−k+i)
n−2k−1+i)[xn−k+i]

=


Sn−2k−1+i/I(P k

n−2k−1+i)[xn−k+i], if n− 2k − 1 + i ≥ k + 1;

Sn−2k−1+i/I(Pn−2k−2+i
n−2k−1+i )[xn−k+i], otherwise.

We recall a lemma from [11] which is heavily used in this paper.

Lemma 3.7 ([11, Lemma 3.6]). Let J ⊂ I be monomial ideals of S, and
let T = S[xn+1] be the polynomial ring over S in the variable xn+1. Then
depth(IT/JT ) = depth(I/J) + 1 and sdepth(IT/JT ) = sdepth(I/J) + 1.

Theorem 3.8. Let n ≥ 2. Then depth(S/I(P k
n )) = d n

2k+1e.

Proof. (a) If n ≤ k + 1, then I(P k
n ) is a squarefree Veronese ideal thus by

Remark 3.5, depth(S/I(P k
n )) = 1 = d n

2k+1e.

(b) For n ≥ k + 2, we consider the following cases:

(1) If k = 1, then by [18, Lemma 2.8] we have depth(S/I(P 1
n)) = dn3 e =

d n
2k+1e.

(2) If k ≥ 2 and k+2 ≤ n ≤ 2k+1, then we get depth(S/I(P k
n )) ≥ 1 as

m /∈ Ass(S/I(P k
n )). Since xk+1 /∈ I(P k

n ) and xsxk+1 ∈ G(I(P k
n )) for

all s ∈ {1, . . . k, k + 2, . . . , n}, therefore we have (I(P k
n ) : xk+1) =

(x1, . . . xk, xk+2, . . . , xn). By [23, Corollary 1.3], we have

depth(S/I(P k
n )) ≤ depth(S/(I(P k

n ) : xk+1))

= depth(S/(x1, . . . xk, xk+2, . . . , xn)) = 1.

Thus depth(S/I(P k
n )) = 1 = d n

2k+1e.
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(3) For k ≥ 2, 2k + 2 ≤ n ≤ 3k + 1 and 0 ≤ i ≤ k − 1, consider the
family of short exact sequences

0 −→ S/((I(P k
n ), An−k+(i−1)) : xn−k+i)

·xn−k+i−−−−−→
S/(I(P k

n ), An−k+(i−1)) −→ S/(I(P k
n ), An−k+i) −→ 0

By Lemma 3.2, S/(I(P k
n ), An−1) ∼= Sn−k−1/I(P k

n−k−1)[xn]. Since
we are considering the case 2k + 2 ≤ n ≤ 3k + 1 which im-
plies that k + 1 ≤ n − k − 1 ≤ 2k. If n − k − 1 = k + 1 then
Sn−k−1/I(P k

n−k−1) = Sk+1/I(P k
k+1), by Remark 3.5 and Lemma

3.7 we have depth
(
S/(I(P k

n ), An−1)
)

= 2. If k + 1 < n − k − 1 ≤
2k, then by case(b)(2) depth(Sn−k−1/I(P k

n−k−1)) = 1. Thus by

Lemma 3.7 we have depth
(
S/(I(P k

n ), An−1)
)

= 2. Now we show

that depth
(
S/(I(P k

n ) : xn−k)
)

= 2. For this we consider two cases:
If n = 2k + 2, then by Remark 3.6

S/(I(P k
n ) : xn−k) =

S/(x2, x3, . . . , xn−k−1, xn−k+1, . . . , xn) ∼= K[x1, xn−k],

and thus depth
(
S/(I(P k

n ) : xn−k)
)

= 2. If n > 2k + 2, by Remark
3.6 we have

S/(I(P k
n ) : xn−k) ∼= Sn−2k−1/I(Pn−2k−2

n−2k−1 )[xn−k],

where 2 ≤ n − 2k − 1 ≤ k. Thus by Remark 3.5 and Lemma 3.7
we get depth

(
S/(I(P k

n ) : xn−k)
)

= 2. Now for 1 ≤ i ≤ k − 1, by
Remark 3.6 we obtain

S/((I(P k
n ), An−k+(i−1)) : xn−k+i) = S/(I(P k

n ) : xn−k+i)

∼= Sn−2k−1+i/I(P
f(n−k+i)
n−2k−1+i)[xn−k+i].

Let T := Sn−2k−1+i/I(P
f(n−k+i)
n−2k−1+i)[xn−k+i]. We consider the fol-

lowing cases:

(i) If k+ 1 = n− 2k− 1 + i, then T = Sk+1/I(P k
k+1)[xn−k+i], thus

by case(a) and Lemma 3.7 we have depth(T ) = 2.

(ii) For k+1 < n−2k−1+i, T = Sn−2k−1+i/I(P k
n−2k−1+i)[xn−k+i].

Since k + 2 ≤ n− 2k − 1 + i ≤ 2k − 1, thus by case(b)(2) and
Lemma 3.7 we have depth(T ) = 2.
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(iii) If 2 ≤ n− 2k − 1 + i < k + 1, then
T = Sn−2k−1+i/I(Pn−2k−2+i

n−2k−1+i )[xn−k+i], by Remark 3.5 and
Lemma 3.7 we have depth(T ) = 2.

Thus by Lemma 3.1 we have depth(S/I(P k
n )) = 2.

(4) For k ≥ 2, n ≥ 3k + 2 and 0 ≤ i ≤ k − 1, consider the family of
short exact sequences

0 −→ S/((I(P k
n ), An−k+(i−1)) : xn−k+i)

·xn−k+i−−−−−→
S/(I(P k

n ), An−k+(i−1)) −→ S/(I(P k
n ), An−k+i) −→ 0

By Lemma 3.2, S/(I(P k
n ), An−1)) ∼= Sn−k−1/I(P k

n−k−1)[xn]. Thus

by induction on n and Lemma 3.7 we have depth(S/(I(P k
n ), An−1)) =

dn−k−12k+1 e+ 1. By Lemma 3.4 we have

S/((I(P k
n ), An−k+(i−1)) : xn−k+i) ∼= Sn−2k−1+i/I(P k

n−2k−1+i)[xn−k+i].

Thus by induction on n and Lemma 3.7 we have

depth(S/((I(P k
n ), An−k+(i−1)) : xn−k+i)) = dn− 2k − 1 + i

2k + 1
e+ 1.

Here we can see that

depth(S/(I(P k
n ), An−1)) = dn−k−12k+1 e+ 1 ≥

dn− k − 2

2k + 1
e+ 1 = depth(S/(I(P k

n ), An−2) : xn−1)),

and for all 1 ≤ i ≤ k − 1,

depth(S/((I(P k
n ), An−k+(i−1)) : xn−k+i)) = dn−2k−1+i

2k+1 e+ 1 ≥

dn− 2k − 2 + i

2k + 1
e+1 = depth(S/((I(P k

n ), An−k+(i−2)) : xn−k+(i−1))).

Thus by Lemma 3.1 we have depth(S/I(P k
n )) = dn−2k−12k+1 e + 1 =

d n
2k+1e.

Let d ∈ [n] and In,d := (u ∈ S square free monomial : deg(u) = d).
Then In,d is called squarefree Veronese ideal of degree d in the variables
x1, x2, . . . , xn. Cimpoeas proved the following theorems:
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Theorem 3.9 ([5, Theorem 1.1]). (1) sdepth(S/In,d) = d− 1.

(2) d ≤ sdepth(In,d) ≤ n−d
d+1 + d.

Theorem 3.10 ([7, Theorem 1.4]). Let M be a Zn-graded S-module. If
sdepth(M) = 0, then depth(M) = 0. Conversely, if depth(M) = 0 and
dimK(Ma) = 1 for any a ∈ Zn, then sdepth(M) = 0.

Lemma 3.11 ([25, Lemma 4]). Let n ≥ 2, then sdepth(S/I(P 1
n)) = dn3 e.

Example 3.12. Let n ≥ 2, and n ≤ 2k + 1, then sdepth(S/I(P k
n )) = 1.

Proof. If n ≤ k+1, then by Theorem 3.9 sdepth(S/I(P k
n )) = 1. Now if k+2 ≤

n ≤ 2k + 1, then depth(S/I(P k
n )) ≥ 1 as m /∈ Ass(S/I(P k

n )), thus by Theorem
3.10 sdepth(S/I(P k

n )) ≥ 1. Since xk+1 /∈ I(P k
n ) and xixk+1 ∈ G(I(P k

n )) for all
i ∈ {1, . . . k, k+2, . . . , n}, therefore (I(P k

n ) : xk+1) = (x1, . . . xk, xk+2, . . . , xn).
Thus by [4, Proposition 2.7] sdepth(S/I(P k

n )) ≤ sdepth(S/(I(P k
n ) : xk+1)) =

sdepth(S/(x1, . . . xk, xk+2, . . . , xn)) = 1.

Proposition 3.13. Let k ≥ 2 and n ≥ 2k + 2. Then

sdepth(S/I(P k
n )) ≥ d n

2k + 1
e.

Proof. (1) If 2k+ 2 ≤ n ≤ 3k+ 1, then by applying Lemma 2.4 on the exact
sequences in case(b)(3) of Theorem 3.8 we get sdepth(S/I(P k

n )) ≥ 2 =
d n
2k+1e.

(2) If n ≥ 3k+2, then the proof is similar to Theorem 3.8. We apply Lemma
2.4 on the exact sequences in case(b)(4) of Theorem 3.8 and obtain

sdepth(S/I(P k
n )) ≥ min

{
sdepth(S/(I(P k

n ), An−1)),

k−1
min
i=0
{sdepth(S/((I(P k

n ), An−k+(i−1)) : xn−k+i))}
}
≥ d n

2k + 1
e.

Theorem 3.14. Let n ≥ 2, then sdepth(S/I(P k
n )) = d n

2k+1e.

Proof. If k = 1, then the result follows by Lemma 3.11. Let k ≥ 2. If
n ≤ 2k + 1, then by Example 3.12 we have the required result. If n ≥ 2k + 2,
then by Proposition 3.13 we have

sdepth(S/I(P k
n )) ≥ d n

2k + 1
e.

We need to prove that sdepth(S/I(P k
n )) ≤ d n

2k+1e, for this we consider the
following three cases:
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(1) If n = (2k + 1)l, where l ≥ 1. We see that

v = xk+1x3k+2x5k+3 · · ·x(2k+1)l−k ∈ S\I(P k
n ),

but xt1v ∈ I(P k
n ) for all t1 ∈ [n]\ supp(v), thus by Lemma 2.5,

sdepth(S/I(P k
n )) ≤ l = d n

2k + 1
e.

(2) If n = (2k + 1)l + r, where r ∈ {1, 2, 3, . . . , k + 1} and l ≥ 1, then we
have

v = xk+1x3k+2x5k+3 · · ·x(2k+1)l−kx(2k+1)l+r ∈ S\I(P k
n ),

and xt2v ∈ I(P k
n ) for all t2 ∈ [n]\ supp(v), so by Lemma 2.5,

sdepth(S/I(P k
n )) ≤ l + 1 = d n

2k + 1
e.

(3) If n = (2k + 1)l + s, where s ∈ {k + 2, k + 3, . . . , 2k} and l ≥ 1, since

v = xk+1x3k+2x5k+3 · · ·x(2k+1)l+k+1 ∈ S\I(P k
n ),

but xt3v ∈ I(P k
n ) for all t3 ∈ [n]\ supp(v), by Lemma 2.5, we get

sdepth(S/I(P k
n )) ≤ l + 1 = d n

2k + 1
e.

4 Depth and Stanley depth of cyclic modules associated
to the edge ideals of the powers of a cycle

In this section, we compute bounds for depth and Stanley depth of cyclic
modules associated to the edge ideals of powers of a cycle. In order to complete
the main task of this section we prove the following three lemmas.

Lemma 4.1. Let k ≥ 2 and n ≥ 3k+2, then S/(I(Ck
n), An−1) ∼= Sn−k/I(P k

n−k).

Proof. Since G(I(Ck
n)) = G(I(P k

n ))∪∪k−1l=1 {xlxl+n−k, xlxl+n−k+1, . . . , xlxn−1}∪
{x1xn, x2xn, . . . , xkxn}, we have

I(Ck
n) + An−1 =

I(P k
n )+

k−1∑
l=1

(xlxl+n−k, xlxl+n−k+1, . . . , xlxn−1)+(x1xn, x2xn, . . . , xkxn)+An−1.
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Thus by the proof of Lemma 3.2, we obtain I(P k
n )+An−1 = I(P k

n−k−1)+An−1.
As

k−1∑
l=1

(xlxl+n−k, xlxl+n−k+1, . . . , xlxn−1) + An−1 = An−1.

Therefore S/(I(Ck
n), An−1) = S/(I(P k

n−k−1), An−1, (x1xn, x2xn, . . . , xkxn))

∼= K[x1, x2, . . . , xn−k−1, xn]/
(
I(P k

n−k−1), (x1xn, x2xn, . . . , xkxn)
)
.

After renumbering the variables, we have

K[x1, . . . , xn−k−1, xn]/
(
I(P k

n−k−1), (x1xn, x2xn, . . . , xkxn)
) ∼= Sn−k/I(P k

n−k).

Lemma 4.2. Let k ≥ 2 and n ≥ 3k + 2 and 0 ≤ i ≤ k − 1, then

S/(I(Ck
n) : xn−k+i) ∼= Sn−2k−1/I(P k

n−2k−1)[xn−k+i].

Proof. Let w be a monomial generator of (I(Ck
n) : xn−k+i). Then w =

v
gcd(v,xn−k+i)

, where v ∈ G(I(Ck
n)). If supp(v) ∩ G(Dn−k+i) 6= ∅, then we have

w ∈ G(Dn−k+i) and if supp(v) ∩ G(Dn−k+i) = ∅ then w ∈ E := G(I(Ck
n)) ∩

K[xi+1, xi+2, . . . , xn−2k−1+i]. So we obtain (I(Ck
n) : xn−k+i) ⊂ E + Dn−k+i.

The other inclusion being trivial we get (I(Ck
n) : xn−k+i) = E+Dn−k+i, which

further implies that S/(I(Ck
n) : xn−k+i) = S/(E+Dn−k+i). After renumbering

the variables, we have

S/(I(Ck
n) : xn−k+i) = S/(E,Dn−k+i) ∼= Sn−2k−1/I(P k

n−2k−1)[xn−k+i].

Lemma 4.3. Let k ≥ 2, n ≥ 3k + 2 and 0 ≤ i ≤ k − 1. Then

S/
(
(I(Ck

n), An−k+(i−1)) : xn−k+i

) ∼= Sn−2k−1/I(P k
n−2k−1)[xn−k+i].

Proof. As
(
(I(Ck

n), An−k+(i−1)) : xn−k+i

)
=
(
(I(Ck

n) : xn−k+i), An−k+(i−1)
)
.

By using the same arguments as in the proof of Lemma 4.2 we have(
(I(Ck

n) : xn−k+i), An−k+(i−1)
)

=
(
E,Dn−k+i, An−k+(i−1)

)
=
(
E,Dn−k+i

)
as An−k+(i−1) ⊂ Dn−k+i. Thus the required result follows by Lemma 4.2.

Corollary 4.4 ([10, Corollary 10.3.7]). Let 2 ≤ d < n. Then

depth(S/Itn,d) = max{0, n− t(n− d)− 1}.
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Theorem 4.5. Let n ≥ 3, then

depth(S/I(Ck
n)) = 1, if n ≤ 2k + 1;

depth(S/I(Ck
n)) ≥ d n− k

2k + 1
e, if n ≥ 2k + 2.

Proof. (a) If n ≤ 2k + 1, then I(Ck
n) is a squarefree Veronese ideal of degree

2. Thus by Corollary 4.4, depth(S/I(Ck
n)) = 1.

(b) For n ≥ 2k + 2, we consider the following cases:

(1) If k = 1, then by [6, Proposition 1.3] depth(S/I(C1
n)) = dn−13 e.

(2) If k ≥ 2 and 2k + 2 ≤ n ≤ 3k + 1, then we have depth(S/I(Ck
n)) ≥

1 = d n−k
2k+1e as m /∈ Ass(S/I(Ck

n)).

(3) For k ≥ 2, n ≥ 3k + 2 and 0 ≤ i ≤ k − 1, consider the family of short
exact sequences

0 −→ S/((I(Ck
n), An−k+(i−1)) : xn−k+i)

·xn−k+i−−−−−→
S/(I(Ck

n), An−k+(i−1)) −→ S/(I(Ck
n), An−k+i) −→ 0

By Lemma 4.1 we have S/(I(Ck
n), An−1)) ∼= Sn−k/I(P k

n−k). Now by
Lemma 4.3, we get

S/((I(Ck
n), An−k+(i−1)) : xn−k+i) ∼= Sn−2k−1/I(P k

n−2k−1)[xn−k+i].

By Theorem 3.8 and Lemma 3.7, we obtain

depth(S/((I(Ck
n), An−k+(i−1)) : xn−k+i)) = dn− 2k − 1

2k + 1
e+1 = d n

2k + 1
e.

Again by Theorem 3.8, we have depth(S/(I(Ck
n), An−1)) = d n−k

2k+1e. Thus
by applying Lemma 2.3(1) on the family of short exact sequences we get
depth(S/I(Ck

n)) ≥ d n−k
2k+1e.

Corollary 4.6. Let n ≥ 3, If n ≥ 2k + 2, then

depth(S/I(Ck
n)) = d n

2k + 1
e, if n ≡ 0, k + 1, . . . , 2k (mod(2k + 1));

d n

2k + 1
e − 1 ≤ depth(S/I(Ck

n)) ≤ d n

2k + 1
e, if n ≡ 1, . . . , k (mod(2k + 1)).

Proof. By Theorem 4.5, it is enough to prove that depth(S/I(Ck
n)) ≤ d n

2k+1e,
for k ≥ 2 and n ≥ 2k + 2. Since xn−k /∈ I(Ck

n), thus by [23, Corollary 1.3] we
have depth(S/I(Ck

n)) ≤ depth(S/(I(Ck
n) : xn−k)). Now we consider two cases:
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(1) Let 2k + 2 ≤ n ≤ 3k + 1, then S/(I(Ck
n) : xn−k) = S/(I(P k

n ) : xn−k)
so by the proof of Theorem 3.8 we have depth(S/(I(P k

n ) : xn−k)) = 2 =
d n
2k+1e. Therefore

depth(S/I(Ck
n)) ≤ depth(S/(I(Ck

n) : xn−k)) = 2 = d n

2k + 1
e.

(2) Let n ≥ 3k + 2, then by Lemma 4.2,

S/(I(Ck
n) : xn−k) ∼= Sn−2k−1/I(P k

n−2k−1)[xn−k].

By Lemma 3.7 and Theorem 3.8, depth(Sn−2k−1/I(P k
n−2k−1)[xn−k]) =

d n
2k+1e. Thus depth(S/I(Ck

n)) ≤ depth(S/(I(Ck
n) : xn−k)) = d n

2k+1e.

Theorem 4.7. Let n ≥ 3, then

sdepth(S/I(Ck
n)) = 1, if n ≤ 2k + 1;

sdepth(S/I(Ck
n)) ≥ d n− k

2k + 1
e, if n ≥ 2k + 2.

Proof. (a) If n ≤ 2k + 1, then sdepth(S/I(Ck
n)) = 1 by Theorem 3.9.

(b) For n ≥ 2k + 2, consider the following cases:

(1) If k = 1, then by [6, Proposition 1.8] sdepth(S/I(C1
n)) ≥ dn−13 e.

(2) If k ≥ 2 and 2k + 2 ≤ n ≤ 3k + 1, then depth(S/I(Ck
n)) ≥ 1 as

m /∈ Ass(S/I(Ck
n)), thus by Theorem 3.10, sdepth(S/I(Ck

n)) ≥ 1 =
d n−k
2k+1e.

(3) For k ≥ 2, n ≥ 3k + 2 and 0 ≤ i ≤ k − 1, consider the family of
short exact sequences

0 −→ S/((I(Ck
n), An−k+(i−1)) : xn−k+i)

·xn−k+i−−−−−→
S/(I(Ck

n), An−k+(i−1)) −→ S/(I(Ck
n), An−k+i) −→ 0.

By Lemma 4.1 we have S/(I(Ck
n), An−1)) ∼= Sn−k/I(P k

n−k). Now
by Lemma 4.3, we get

S/((I(Ck
n), An−k+(i−1)) : xn−k+i) ∼= Sn−2k−1/I(P k

n−2k−1)[xn−k+i].

By Theorem 3.14 and Lemma 3.7, we obtain

sdepth(S/((I(Ck
n), An−k+(i−1)) : xn−k+i)) =

dn− 2k − 1

2k + 1
e+ 1 = d n

2k + 1
e.
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Again by Theorem 3.14, we have sdepth(S/(I(Ck
n), An−1)) = d n−k

2k+1e.
By applying Lemma 2.4 on the above family of short exact se-
quences we get sdepth(S/I(Ck

n)) ≥ d n−k
2k+1e.

Corollary 4.8. Let n ≥ 3, if n ≥ 2k + 2, then

sdepth(S/I(Ck
n)) = d n

2k + 1
e, if n ≡ 0, k + 1, . . . , 2k (mod(2k + 1));

d n

2k + 1
e − 1 ≤ sdepth(S/I(Ck

n)) ≤ d n

2k + 1
e, if n ≡ 1, . . . , k (mod(2k + 1)).

Proof. When k = 1, then by [6, Theorem 1.9], sdepth(S/I(Ck
n)) ≤ dn3 e. By

Theorem 4.7 it is enough to prove that sdepth(S/I(Ck
n)) ≤ d n

2k+1e for k ≥ 2

and n ≥ 2k + 2. Since xn−k /∈ I(Ck
n), thus by [4, Proposition 2.7] we have

sdepth(S/I(Ck
n)) ≤ sdepth(S/(I(Ck

n) : xn−k)).

Now we consider two cases:

(1) Let 2k + 2 ≤ n ≤ 3k + 1, then S/(I(Ck
n) : xn−k) = S/(I(P k

n ) : xn−k) so
by the proof of Theorem 3.14 we have sdepth(S/(I(P k

n ) : xn−k)) = 2 =
d n
2k+1e. Therefore

sdepth(S/I(Ck
n)) ≤ sdepth(S/(I(Ck

n) : xn−k)) = 2 = d n

2k + 1
e.

(2) Let n ≥ 3k + 2, then by Lemma 4.2

S/(I(Ck
n) : xn−k) ∼= Sn−2k−1/I(P k

n−2k−1)[xn−k].

By Lemma 3.7 and Theorem 3.14, sdepth(Sn−2k−1/I(P k
n−2k−1)[xn−k]) =

d n
2k+1e. Thus sdepth(S/I(Ck

n)) ≤ sdepth(S/(I(Ck
n) : xn−k)) = d n

2k+1e.

5 Lower bounds for Stanley depth of edge ideals of kth

powers of paths and cycles and a conjecture of Herzog

In this section we compute some lower bounds for Stanley depth of I(P k
n ) and

I(Ck
n). These bounds are good enough to prove that Conjecture 1.1 is true for

I(P k
n ) and I(Ck

n). Let 0 ≤ i ≤ k − 1, define

Rn−k+i := K[{x1, x2, . . . , xn}\{xn−k, xn−k+1, . . . , xn−k+i}]
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and

B′n−k+i := (xj : xj ∈ NPk
n

(xn−k+i)\{xn−k, xn−k+1, . . . , xn−k+(i−1)}).

Thus Rn−k+i is a subring of S and B′n−k+i is a monomial prime ideal of S. Let
I ⊂ Z = K[xi1 , xi1 , . . . , xir ] be a monomial ideal and Z ′ := Z[xir+1]. Then
we write IZ ′ = I[xir+1]. Now we recall a useful remark of Cimpoeas.

Remark 5.1. [4, Remark 1.7] Let I be a monomial ideal of S, and I ′ =
(I, xn+1, xn+2, . . . , xn+m) be a monomial ideal of S′ = S[xn+1, xn+2, . . . , xn+m].
Then

sdepthS′(I
′) ≥ min{sdepthS(I) + m, sdepthS(S/I) + dm

2
e}.

Theorem 5.2. Let n ≥ 2, then sdepth(I(P k
n )) ≥ d n

2k+1e+ 1.

Proof. (a) If n ≤ 2k + 1, then as the minimal generators of I(P k
n ) have de-

gree 2, by [15, Lemma 2.1] we have sdepth(I(P k
n )) ≥ 2 = d n

2k+1e+ 1.

(b) For n ≥ 2k + 2, if k = 1, then by [19, Theorem 2.3], sdepth(I(P 1
n)) ≥

n− bn−12 c = dn−12 e+ 1 ≥ dn3 e+ 1. Now for k ≥ 2, we prove this result
by induction on n. We consider the following decomposition of I(P k

n ) as
a vector space:

I(P k
n ) = I(P k

n ) ∩Rn−k ⊕ xn−k(I(P k
n ) : xn−k)S.

Similarly, we can decompose I(P k
n ) ∩Rn−k as follows:

I(P k
n )∩Rn−k = I(P k

n )∩Rn−k+1⊕xn−k+1(I(P k
n )∩Rn−k : xn−k+1)Rn−k.

Continuing in the same way for 1 ≤ i ≤ k − 1 we have

I(P k
n ) ∩Rn−k+i = I(P k

n ) ∩Rn−k+(i+1)⊕
xn−k+(i+1)(I(P k

n ) ∩Rn−k+i : xn−k+(i+1))Rn−k+i.

Finally we get the following decomposition of I(P k
n ):

I(P k
n ) = I(P k

n ) ∩Rn−1⊕
⊕k−1

i=1 xn−k+i(I(P k
n )∩Rn−k+(i−1) : xn−k+i)Rn−k+i⊕xn−k(I(P k

n ) : xn−k)S.

Therefore

sdepth(I(P k
n )) ≥ min

{
sdepth(I(P k

n )∩Rn−1), sdepth((I(P k
n ) : xn−k)S),

k−1
min
i=1
{sdepth((I(P k

n ) ∩Rn−k+(i−1) : xn−k+i)Rn−k+i)}
}
.
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As I(P k
n )∩Rn−1 = G(I(P k

n−k−1))[xn], thus by induction on n and Lemma

3.7 we have sdepth(I(P k
n )∩Rn−1) ≥ dn−k−12k+1 e+1+1 ≥ d n

2k+1e+1. Now

we need to show that sdepth((I(P k
n ) : xn−k)S) ≥ d n

2k+1e+ 1 and

sdepth((I(P k
n ) ∩Rn−k+(i−1) : xn−k+i)Rn−k+i) ≥ d

n

2k + 1
e+ 1.

For this we consider the following cases:

(1) Let 2k + 2 ≤ n ≤ 3k + 1. If n = 2k + 2, then (I(P k
n ) : xn−k)S =

(x2, . . . , xn−k−1, xn−k+1, . . . , xn)S, thus by [2, Theorem 2.2] and
Lemma 3.7 we have

sdepth((I(P k
n ) : xn−k)S) = dn− 2

2
e+ 2 ≥ d n

2k + 1
e+ 1.

If 2k + 3 ≤ n ≤ 3k + 1, then by Remark 3.6, we get

(I(P k
n ) : xn−k)S = (G(I(P

f(n−k)
n−2k−1)), Bn−k)[xn−k].

Since sdepth(I(P
f(n−k)
n−2k−1)) + |G(Bn−k)| ≥ 2, by Remark 3.5 we have

sdepth(Sn−2k−1/I(P
f(n−k)
n−2k−1)) + d |G(Bn−k)|

2
e ≥ 2,

then by Remark 5.1, sdepth(G(I(P
f(n−k)
n−2k−1)), Bn−k) ≥ 2, and by

Lemma 3.7 we have sdepth((I(P k
n ) : xn−k)S) ≥ 3 = d n

2k+1e + 1.
Now since

(I(P k
n ) ∩Rn−k+(i−1) : xn−k+i)Rn−k+i) =

(G(I(P
f(n−k+i)
n−2k−1+i)), B

′
n−k+i)[xn−k+i].

So by the same arguments we have

sdepth((I(P k
n )∩Rn−k+(i−1) : xn−k+i)Rn−k+i) ≥ 3 = d n

2k + 1
e+ 1.

(2) If n ≥ 3k + 2, then by the proof of Lemma 3.3 (I(P k
n ) : xn−k)S =

(G(I(P k
n−2k−1)), Bn−k)[xn−k] and

(I(P k
n ) ∩Rn−k+(i−1) : xn−k+i)Rn−k+i =

(G(I(P k
n−2k−1+i)), B

′
n−k+i)[xn−k+i].
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By Remark 5.1 we have

sdepth(G(I(P k
n−2k−1)), Bn−k) ≥ min

{
sdepth(G(I(P k

n−2k−1)))+

|G(Bn−k)|, sdepth(Sn−2k−1/I(P k
n−2k−1)) + d |G(Bn−k)|

2
e
}
.

By induction on n we have sdepth(G(I(P k
n−2k−1))) ≥ dn−2k−12k+1 e +

1 = d n
2k+1e, and by Theorem 3.14, sdepth(Sn−2k−1/I(P k

n−2k−1)) =

d n
2k+1e − 1. Therefore sdepth(G(I(P k

n−2k−1)), Bn−k) ≥ d n
2k+1e+ 1.

Thus by Lemma 3.7 we have sdepth((I(P k
n ) : xn−k)S) > d n

2k+1e+1.
Now using Remark 5.1 again, we get

sdepth(G(I(P k
n−2k−1+i)), B

′
n−k+i) ≥

min
{

sdepth(G(I(P k
n−2k−1+i))) + |G(B′n−k+i)|,

sdepth(Sn−2k−1+i/I(P k
n−2k−1+i)) + d

|G(B′n−k+i)|
2

e
}
.

By induction on n we have sdepth(G(I(P k
n−2k−1+i))) ≥ dn−2k−1+i

2k+1 e+
1, and by Theorem 3.14 we have sdepth(Sn−2k−1+i/I(P k

n−2k−1+i)) =

dn−2k−1+i
2k+1 e. Therefore

sdepth(G(I(P k
n−2k−1+i)), B

′
n−k+i) ≥ d

n− 2k − 1 + i

2k + 1
e+ 1.

Thus by Lemma 3.7

sdepth((I(P k
n ) ∩Rn−k+(i−1) : xn−k+i)Rn−k+i) ≥ d

n

2k + 1
e+ 1.

This completes the proof.

Proposition 5.3. Let n ≥ 2k + 1, then sdepth(I(Ck
n)/I(P k

n )) ≥ dn+k+1
2k+1 e.

Proof. When k = 1, then by [6, Proposition 1.10] we have the required result.
Now assume that k ≥ 2 and consider the following cases:

(1). If 2k + 1 ≤ n ≤ 3k + 1, then as I(Ck
n) is a monomial ideal generated

by degree 2 so by [11, Theorem 2.1] sdepth(I(Ck
n)/I(P k

n )) ≥ 2 = dn+k+1
2k+1 e.
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(2). If 3k + 2 ≤ n ≤ 4k + 1, then we use [11] to show that there exist
Stanley decompositions of desired Stanley depth. Let s ∈ {1, 2, . . . k}, js ∈
{1, 2, . . . , k + 1− s} and

L := ⊕k
s=1

(
⊕k+1−s

js=1 xjsxn+1−sK[xjs , xjs+k+1, xn+1−s]
)
.

It is easy to see that L ⊂ I(Ck
n)\I(P k

n ). Now let ui ∈ I(Ck
n)\I(P k

n ) be a
squarefree monomial such that ui /∈ L then clearly deg(ui) ≥ 3. Since

I(Ck
n)/I(P k

n ) ∼= L⊕ui uiK[ supp(ui)]

Thus sdepth(I(Ck
n)/I(P k

n )) ≥ 3 = dn+k+1
2k+1 e as required.

(3). If n ≥ 4k+2, then we have the following K-vector space isomorphism:

I(Ckn)/I(P
k
n ) ∼=

⊕kj1=1 xj1xn
K[xj1+k+1, xj1+k+2, . . . , xn−k−1]

(xj1+k+1xj1+k+2, xj1+k+1xj1+k+3, . . . , xn−k−2xn−k−1)
[xj1 , xn]⊕

⊕k−1
j2=1 xj2xn−1

K[xj2+k+1, xj2+k+2, . . . , xn−k−2]

(xj2+k+1xj2+k+2, xj2+k+1xj1+k+3, . . . , xn−k−3xn−k−2)
[xj2 , xn−1]⊕

·
·
·

⊕2
jk−1=1 xjk−1xn−k+2

K[xjk−1+k+1, xjk−1+k+2, . . . , xn−2k+1]

(xjk−1+k+1xjk−1+k+2, . . . , xn−2kxn−2k+1)
[xjk−1 , xn−k+2]⊕

x1xn−(k−1)
K[xk+2, xk+3, . . . , xn−2k]

(xk+2xk+3, xk+2xk+4, . . . , xn−2k−1xn−2k)
[x1, xn−(k−1)].

Thus

I(Ckn)/I(P
k
n ) ∼=

⊕ks=1

(
⊕k+1−s
js=1 xjsxn+1−s

(
Sjs+k+1,n−s−k/

(
G(I(P kn ))∩Sjs+k+1,n−s−k

)
[xjs , xn+1−s]

)
,

where Sjs+k+1,n−s−k = K[xjs+k+1, xjs+k+2, . . . , xn−s−k]. Indeed, if u ∈ I(Ckn) such
that u 6∈ I(P kn ) then (xjsxn+1−s)|u for only one pair of s and js. If (xjsxn+1−s)|u
then u = xγjsx

δ
n+1−sv and v ∈ Sjs+k+1,n−s−k. Since v /∈ I(P kn ), it follows that

v /∈ G(I(P kn )) ∩ Sjs+k+1,n−s−k. Clearly

Sjs+k+1,n−s−k/G(I(P
k
n )) ∩ Sjs+k+1,n−s−k ∼= Sn−(js+2k+s)/I(P

k
n−(js+2k+s)).

Thus by Theorem 3.14 and Lemma 3.7, we have

sdepth(I(Ckn)/I(P
k
n )) ≥

k

min
s=1
{dn− (js + s+ 2k)

2k + 1
e+ 2}.
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It is easy to see that max{js + s} = k + 1. Therefore

sdepth(I(Ckn)/I(P
k
n )) ≥ d

n− (3k + 1)

2k + 1
e+ 2 = dn+ k + 1

2k + 1
e.

Theorem 5.4. Let n ≥ 3, then

sdepth(I(Ck
n)) ≥ 2, if n ≤ 2k + 1;

sdepth(I(Ck
n)) ≥ d n− k

2k + 1
e+ 1, if n ≥ 2k + 2.

Proof. (a) If n ≤ 2k + 1, then as the minimal generators of I(Ck
n) have

degree 2, so by [15, Lemma 2.1] sdepth(I(Ck
n)) ≥ 2.

(b) If n ≥ 2k + 2, then consider the short exact sequence

0 −→ I(P k
n ) −→ I(Ck

n) −→ I(Ck
n)/I(P k

n ) −→ 0,

by Lemma 2.4 we have

sdepth(I(Ck
n)) ≥ min{sdepth(I(P k

n )), sdepth(I(Ck
n)/I(P k

n ))}.

By Theorem 5.2, sdepth(I(P k
n )) ≥ d n

2k+1e + 1, and by Proposition 5.3,

we obtain sdepth(I(Ck
n)/I(P k

n )) ≥ dn+k+1
2k+1 e = d n−k

2k+1e+ 1.

Corollary 5.5. Let n ≥ 3, if n ≤ 2k + 1, then sdepth(I(Ck
n)) ≥ 2 =

sdepth(S/I(Ck
n)) + 1. If n ≥ 2k + 2, then

sdepth(I(Ck
n)) ≥ sdepth(S/I(Ck

n)), if n ≡ 1, . . . , k (mod(2k + 1));

sdepth(I(Ck
n)) ≥ sdepth(S/I(Ck

n)) + 1, if n ≡ 0, k + 1, . . . , 2k (mod(2k + 1)).

Proof. Proof follows by Corollary 4.8, Theorem 4.7 and Theorem 5.4.
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